

Australian Government

Aquaculture 4.0: Transforming Indonesia's Future Fisheries SMEs

Sub-theme:

Development of Micro, Small, and Medium Enterprises that are Globally Competitive

Muhammad Nabil Satria Faradis The University of Melbourne

1. Background: Tremendous growth of Aquaculture

World

- Aquaculture production reached a new record which provides almost half with 73.8 million tons in 2014
- Meanwhile capture fishing already saturated since 1990
- 18.7 million people engaged in fish farming sector

(FAO, 2016a; FAO, 2016b; World Bank, 2014)

Indonesia

- Aquaculture becomes the key-factor of fish supply growth in recent years
- The share of farmed fish with total fish supply increase from 10.6% in 1960 to 40.2% in 2014
- Projected to reach more than half in the next decades
- Pond area = 541000 HA, unfortunately 80% traditional system

(FishStatJ, 2016; Trana, Rodriguezb, & Chana, 2017; Phillips, et al., 2016).)

Australian Government

Recent reports agree that this sector will significantly contribute to providing adequate nutrition and achieving food security to feed 9.7 billion global population by 2050

(Dupont, Cousin, & Dupont, 2018; World Bank, 2014)

Technology does not change for decades Limited pond area – need intensify the available ponds

Lack of clean water resources

Ineffective feeding method

Relatively low income

Prone to Climate Change

INDONESIA DEVELOPMENT FORUM 2019

Australian Government

HOW DO THEY FACE INDUSTRY 4.0? A Breakthrough Approach is Urgently Needed

2. Solution: AQUACULTURE 4.0

A smart farm solution for intensifying production by utilizing the Internet of Things (IoT)

IoT will lead the fish farmer with a new era of affordable, smart, efficient and reliable technology

Artificial Intelligence (AI) processing important information from smart sensors and satellites

Addressing critical challenges for an eco-friendly solution and increase production

Aquaculture 4.0 worldwide – Global Stepping stone

Aquaculture 4.0 worldwide – Global Stepping stone

Cargill (2018) released iQShrimp in the US, a platform that gathered data in shrimp size, feeding, weather and water conditions. Thus, the algorithms could deliver a reference such as feeding plans and ideal harvest dates

The Yield (2014) in Australia, collected important climate condition such as salinity, temperature and depth of water, pressure and sea-tide height. Thought cloud platform, the AI could forecast three-days of local weather and harvesting condition

XpertSea (2009) from Canada, utilized computer vision and AI to accelerate and increase the accuracy of shrimp larvae count by 60%

Umitron (2016) in Japan, used sensors and machine learning to watching fish behaviour. The analysis could determine the best feed-time to avoid overfeeding and the behaviours of different fish species

Aquaculture 4.0 – Current Stage in Indonesia

eFisheries (2013)

Produced automatic feeder and track hungry fish by monitoring their movement and water ripple

JALA (2015)

Provided all-in-one device measurement including DO (Dissolved Oxygen), salinity, temperature, pH, humidity and total dissolved solid with corrective algorithms

MINO (2016)

Created microbubble technology to increase dissolved oxygen on ponds controlled by DO sensors. The technology could increase the fish weight up to 40% **2. Idea:** Life cycle framework of Aquaculture 4.0

2. Idea: Example of Application – Life Cycle framework

Life Cycle Framework	Example of Aquaculture 4.0 Application		
Ingredient supply	Ingredient inventory environment monitoring		
	Automatic ingredient ordering		
	Ingredient detection and tracing		
	Ingredient transportation monitoring		
	Ingredient cultivation and production monitoring		
Growth Cycle	Water quality monitoring		
	Fish behaviour detection		
	Feeding precision system		
	Weather prediction		
	Data analysis and control system		
	Environment control processing		
Processing and Packaging	Intelligent labels formulation		
	Aquaculture product automatic classification		
	Refrigerated warehouse management		
Distribution and storage	Refrigerated truck monitoring and controlling		
	Aquaculture product real-time tracking		
	Aquaculture product automatic sorting		
	Aquaculture product identification		
Consumption	Aquaculture product life cycle evaluation		
	Aquaculture product quality detection		
	Aquaculture product precise recall		

AI algorithms suggest feed, harvest, weather with energy and eco manners

Real-time data Integration – sharing with peers

Reduce risk, intensify resources (land – water) and improve productivity

Better understanding fish behavior

3. Aquaculture 4.0 Sustainably Initiative

Environment Advantage:

- Managing and protecting ecosystem services
- Improving water quality and reducing waste by-product
- Providing intensive systems for water usage and fish seeds
- Intensifying pond without require further land clearance
- Developing the technology by renewable energy sources

Social Advantage:

- Empowering marginalised groups and creating equal job opportunities
- Improving safety and security for worker
- Providing decent rural employment
- Improving the quality of life and enterprise development

Economic Advantage:

- Opening more jobs opportunities in engaged sector on chain and logistic system
- Creating more opportunities for investors
- Improving infrastructure and transport

4. Implication for Policy & Practice: (TFOM) analysis

Focus: Collaboration models from all stakeholders and incentives alignment

Strategies	Action by	Key Opportunity	Key Risk
1. Providing structural incentives in order to encourage the prioritisation of sustainability objectives at the design	Government	Maximising sustainable development impact of the	Sustainability continues to be an "accidental
stage of the Aquaculture 4.0	All	Aquaculture 4.0	afterthought"
2. Integrating and researching Aquaculture 4.0 technologies and drive use cases-based development	Business, Academic	Delivering results despite quite immature market and fragmented landscape	Loss of business opportunities as customers
the restrictions of fragmentation	All		consolidation
3. Prioritising infrastructure solutions, to enable business models and facilitate scale	Government Business	Reveal economic value to the global economy	Subdued or sub-standard progress from promising segments
4. Simplifying legal frameworks, accelerating procurement processes and engaging the experts to enhance the pace of Aquaculture 4.0 deployments and decrease the jeopardy of political cycles	All	Streamlining procedures to attain the full scale of the opportunities efficiently	Subdued or sub-standard progress from promising segments
5. Establishing early the data governance terms for ownership, privacy, usage and sharing as a central pillar of the partnership	Government	Leveraging the full potential of data	Possible conflicts and failure in delivering the promised results

Focus: Business and investment models

Strategies	Action by	Key Opportunity	Key Risk
6. Exercising flexibility in designing and executing business models	Business All	Maximizing revenue chances in a moderately nascent industry	Missed profits and development opportunities
7. Developing cross-industry solutions to bring mutual benefits and enabling to create a new monetisation models	Academia Business	Innovation driving new revenue streams	Missed profits and development opportunities
8. Achieving scale by demand consolidation and bundling to attract alternative funding sources (e.g., institutional investors)	All	Achieving the true scale of opportunities by bringing in new class of investors	Missed profits and development opportunities

Focus: Impact measurement

Strategies	Action by	Key Opportunity	Key Risk
9. Embracing a sustainability awareness culture to respond to new generational demand, enhancing brand reputation and attracting top talent	Business All	Indonesian bonus demographic – align with priorities	Decreased competitiveness and brand obscurity
10. Adopting a framework based on UN Sustainable Development Goals (SDGs) to estimate possible effect and measuring outcomes	Business	Homogenising the language and goals used for sustainable development	Sector/industry specific impact measurement not understood by the broader community
	All		
11. Identifying potential Sustainable Development Goals and targets addressable by Aquaculture 4.0 project and incorporating them into the commercial design	Business	Maximizing sustainable development impact of Aquaculture 4.0	Sustainability continues to be an "accidental afterthought"
	All		

Local Community Aquaculture 4.0 applications will help Fisheries SMEs better approach to increase their production

Government

Facilitate all stakeholders to create years plant to prepare the local Aquaculture SMEs and labor force for facing and adapting this technology disruption.

Business

Several examples of technologies could be the best practice to be implemented in Indonesia

Academic

Prepare the transition of IoT technology for increased economic growth, environmental sustainability and food security in the fisheries sector

- The complete application of Aquaculture 4.0 will help Fisheries SMEs to achieve the idea of precision and intensive aquaculture. It would remarkably contribute to solving the worlds and Indonesia food problem with an increasing population.
- In the growth cycle, several examples of technologies could be the best practice to be implemented in Indonesia.
- Life cycle Aquaculture 4.0 is necessary to solve the challenge by helping fishfarmers recognise the quality of agriculture ingredients, improve the yields as well as the quality, and produce creditable aquaculture-products for the market.
- Besides technical issues, emerging finance, operation, and management issues are gradually observed in the Aquaculture 4.0.
- The local business, academic, government, and business (quadruple helix) should prepare the transition of IoT technology for increased economic growth, environmental awareness and food security in the aquaculture sector with sustainable manner.

Thank You

Research Experiences

Two years in Centre for Energy Studies UGM

A year to research the fluid dynamics application in Helmholtz-Zentrum Dresden-Rossendorf, Germany

Master candidate at Mechanical Engineering with Business with Australia Awards Scholarship

Two years of experience in developing the aquaculture technology

1st winner of YSEALI World for Food Innovation Challenge 2016 by US Department of State

1st winner of Ideas for Action 2018 held by World Bank - Wharton School of University of Pennsylvania

MUHAMMAD NABIL SATRIA FARADIS

- Bostock, J., McAndrew, B., Richards, R., Jauncey, K., Telfer, T., Lorenzen, K., ... & Corner, R. (2010). Aquaculture: global status and trends. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 365(1554), 2897-2912.
- Chiang, C. T. (2017). A CMOS Seawater Salinity to Digital Converter for IoT Applications of Fish Farms. *IEEE Transactions on Circuits and Systems I: Regular Papers*, 64(9), 2591-2597.
- Dupont, C., Cousin, P., & Dupont, S. (2018, June). IoT for aquaculture 4.0 smart and easy-to-deploy realtime water monitoring with IoT. In 2018 Global Internet of Things Summit (GIoTS) (pp. 1-5). IEEE.
- Encinas, C., Ruiz, E., Cortez, J., & Espinoza, A. (2017, April). Design and implementation of a distributed IoT system for the monitoring of water quality in aquaculture. In 2017 Wireless Telecommunications Symposium (WTS) (pp. 1-7). IEEE.
- FAO. (2016a). Contributing to food security and nutrition for all. Rome.
- FAO. (2016b). The State of Phillips, et. all.eries and Aquaculture 2016. Contributing to food security and nutrition for all. Rome. 200 pp.
- FishStatJ. (2016). Database and Software for Fishery Statistical Analysis. United Nations FAO.
- Kobayashi, M., Msangi, S., Batka, M., Vannuccini, S., Dey, M. M., & Anderson, J. L. (2015). Fish to 2030: the role and opportunity for aquaculture. *Aquaculture economics & management*, *19*(3), 282-300.
- Maurya, S., & Jain, V. K. (2017). Energy-Efficient Network Protocol for Precision Agriculture: Using threshold sensitive sensors for optimal performance. *IEEE Consumer Electronics Magazine*, 6(3), 42-51.

- Phillips, M., Henriksson, P. J. G., Tran, N., Chan, C. Y., Mohan, C. V., Rodriguez, U. P., & Koeshendrajana, S. (2016). Menjelajahi masa depan perikanan budidaya Indonesia (Exploring Indonesian aquaculture futures).
- Rimmer, M. A., Sugama, K., Rakhmawati, D., Rofiq, R., & Habgood, R. H. (2013). A review and SWOT analysis of aquaculture development in Indonesia. *Reviews in Aquaculture*, *5*(4), 255-279.
- Ruan, J., Wang, Y., Chan, F. T. S., Hu, X., Zhao, M., Zhu, F., & Lin, F. (2019). A Life Cycle Framework of Green IoT-Based Agriculture and Its Finance, Operation, and Management Issues. *IEEE Communications Magazine*, 57(3), 90-96.
- Subasinghe, R. P., Curry, D., McGladdery, S. E., & Bartley, D. (2003). Recent technological innovations in aquaculture. *FAO Fisheries Circular*, *886*, 85.
- Trana, N., Rodriguezb, U., Chana, C. Y., et.all. (2017). Indonesian aquaculture futures: An analysis of fish supply and demand in Indonesia to 2030 and role of aquaculture using the AsiaFish model. *Marine Policy 79 (2017) 25–32*
- World Bank. (2014). Reducing disease risk in aquaculture. *World Bank Report Number 88257-GL*. Agriculture and Environmental Services Discussion Paper 09.
- World Economic Forum. (2018). Future of Digital Economy and Society System Initiative: Internet of Things Guidelines for Sustainability. Retrieved from http://www3.weforum.org/docs/IoTGuidelinesforSustainability.pdf